เป็นทฤษฎีที่ใช้อธิบายคุณสมบัติของแสงในรูปแบบของอนุภาค ที่เรียกว่า "โฟตอน" (Photon) จากเดิม (Classical Physics) ที่อธิบายคุณสมบัติของแสงในรูปคลื่นแม่เหล็กไฟฟ้า
อัลเบิร์ต ไอน์สไตน์ (Albert Einstein) เป็นผู้ค้นคว้าและตั้งทฤษฎีนี้ขึ้น และได้รับรางวัลโนเบลสาขาฟิสิกส์จากทฤษฎีนี้
ประวัติ และความเป็นมา
ในปี 1887 เฮิรตซ์ (Heinrich Hertz) พบว่าเมื่อฉายแสงอัลตราไวโอเล็ตไปยังขั้วไฟฟ้าซึ่งอยู่ในวงจร จะมีประจุไฟฟ้าหลุดออกมา ต่อมาฮอลล์วอชส์ (Wilhelm Hallwachs) พบว่าเมื่อมีแสงหรือคลื่นแม่เหล็กไฟฟ้าความถี่สูงตกกระทบผิวโลหะ จะมีอิเล็กตรอนหลุดออกจากผิวโลหะนั้น ปรากฏการณ์เช่นนี้เรียกว่า ปรากฏการณ์โฟโตอิเล็กทริก (photoelectric effect) และเรียกอิเล็กตรอนที่หลุดออกจากผิวโลหะที่ถูกแสงว่าโฟโตอิเล็กตรอน (photoelectron)
โดยปกติอิเล็กตรอนนำไฟฟ้าในโลหะนั้นอยู่ในแถบนำไฟฟ้า (conduction band) อิเล็กตรอนเหล่านี้สามารถเคลื่อนที่ในแถบนำไฟฟ้าได้อย่างอิสระ โดยอิเล็กตรอนจะไม่หลุดออกจากโลหะที่อุณหภูมิห้อง ทั้งนี้เนื่องจากแรงดึงดูดระหว่างนิวเคลียสซึ่งมีประจุบวกกับอิเล็กตรอนภายในโลหะ ดังนั้นจึงเปรียบเสมือนกับว่าอิเล็กตรอนอยู่ภายในโลหะโดยมีกำแพงศักย์ (potential barrier) กั้นอยู่ที่ผิวโลหะ ระดับพลังงานสูงสุดที่มีอิเล็กตรอนคือระดับเฟอร์มี (fermi level)
รูปที่ 1 แสดงกำแพงศักย์กั้นอิเล็กตรอนภายในโลหะ
พลังงานที่น้อยที่สุดที่สามารถทำให้อิเล็กตรอนหลุดออกจากผิวโลหะ (work function) W0 ขึ้นกับชนิดของโละหะ อิเล็กตรอนที่อยู่ต่ำกว่าระดับเฟอร์มีจะต้องการพลังงานมากกว่า W0 จึงจะหลุดจากผิวโลหะ
ในปี 1905 ไอสไตน์ได้อธิบายปรากฏการณ์โฟโตอิเล็กทริกโดยใช้แนวความคิดของพลังค์ คือ คลื่นแม่เหล็กไปฟ้าความถี่ f ที่ตกกระทบผิวโลหะจะมีลักษณะคล้ายอนุภาคประกอบด้วยพลังงานเล็กๆ E เรียกว่า ควอนตัมของพลังงานหรือ โฟตอน (photon) โดย E = hf ถ้าพลังงานนี้มีค่ามากกว่าเวิร์กฟังก์ชัน อิเล็กตรอนจะหลุดออกจากโลหะด้วยพลังงานจลน์มากสุด Ek(max)
Ek(max) = hf - W0
จากการศึกษาปรากฏกาณ์โฟโตอิเล็กทริกสรุปได้ดังนี้
1. อัตราการปล่อยอิเล็กตรอน (หรือ ip)เป็นสัดส่วนโดยตรงกับความเข้มแสง I เมื่อความถี่ f ของแสงและความต่างศักย์มีค่าคงตัว ดังรุปที่ 2 ถ้าเปลี่ยนความถี่หรือชนิดของโลหะจะได้กราฟระหว่าง ipกับ I เป็นเส้นตรงเหมือนเดิมแต่มีความชันเปลี่ยนไป
2. ถ้าความเข้มคงที่และเปลี่ยนความถี่ของแสง จะได้กราฟ ดังรูปที่ 3 ซึ่งมีความถี่จำกัดค่าหนึ่งที่เริ่มเกิดโฟโตอิเล็กตรอนเรียกว่า ความถี่ขีดเริ่ม f0 (threshold frequency) ความถี่ขีดเริ่มของสารแต่ละชนิดจะไม่เหมือนกัน เมื่อแสงปล่อยพลังงาน hf0 ออกมาในรูปของโฟตอน ซึ่งถ้าเท่ากับ W0 จะได้ Ek(max) = 0 จึงไม่มีอิเล็กตรอนหลุดออกจากโลหะ
3. ถ้าความถี่และความเข้มแสงคงตัว แต่เปลี่ยนค่าความต่างศักย์ V ระหว่างขั้วไฟฟ้าจะได้ความสัมพันธ์ของ ip กับ V ดังรูปที่ 4 ที่ความต่างศักย์มีค่ามาก อิเล็กตรอนที่หลุดออกมาจะคงเดิมจึงเกิดกระแสอิ่มตัว เมื่อเพิ่มศักย์ไฟฟ้าเข้าไปก็ไมาสามารถเพิ่มกระแสได้ และถ้าลดความต่างศักย์กระแสจะลดลงด้วย จนกระทั่งความต่างศักย์เป็นลบที่ค่าหนึ่งจะไม่มีกระแส เรียกศักย์นี้ว่า ศักย์หยุดยั้ง (stopping potential) V s ไม่มีอิเล็กตรอนตัวไหนมีพลังงานจลน์เพียงพอที่จะไปยังขั้วไฟฟ้าได้ ดังนั้น
Ek(max) = eV s
4. ถ้าความถี่ต่ำกว่าความถี่ขีดเริ่ม f0 จะไม่มีอิเล็กตรอนหลุดออกมา แสดงว่าโฟตอนที่ตกกระทบโลหะมีพลังงานน้อยกว่าเวิร์กฟังก์ชันของสารนั้น แต่ถ้าความถี่เพิ่มขึ้นพลังงานจลน์สูงสุดของอิเล็กตรอนจะเพิ่มขึ้น
ปรากฏการณ์โฟโตอิเล็กทริกนี้คล้ายกับปรากฏการณ์ปล่อยประจุไฟฟ้าเนื่องจากความร้อน (thermionic enission) ซึ่ง เอดิสัน (Edison) เป็นผู้ค้นพบในปี 1883 ในขณะประดิษฐ์หลอดไฟคือ เมื่อโลหะได้รับความร้อนอิเล็กตรอนในโลหะบางตัวจะได้รับพลังงานสูงกว่าเวิร์กฟังก์ชันในโลหะและหลุดออกจากโลหะได้
ปรากฏการณ์คอมป์ตัน หรือ การกระเจิงคอมป์ตัน
เป็นการลดพลังงาน หรือการเพิ่มความยาวคลื่นของโฟตอนของรังสีเอ็กซ์ หรือรังสีแกมมา เมื่อทำอันตกิริยากับสสาร ส่วนปรากฏการณ์ สามารถเกิดขึ้นได้เช่นกันเมื่อโฟตอนได้รับพลังงานหรือการลดลงของความยาวคลื่นนั่นเอง โดยเรียกความยาวคลื่นที่เพิ่มขึ้นในปรากฏการณ์คอมพ์ตันนี้ว่า Compton shift
ถึงแม้ว่าปรากฏการณ์นี้สามารถเกิดขึ้นได้กับนิวเคลียสก็ตาม ปรากฏการณ์คอมพ์ตันนี้ยังคงเกี่ยวข้องกับอิเล็กตรอนในอะตอม
ไม่มีความคิดเห็น:
แสดงความคิดเห็น